爱AI工具库,国内AIGC产品探索者分享平台
注册
99%工具无需特殊网络!
当前位置:首页

1/30 训练步骤复刻 DeepSeek-R1-Zero,沈向洋姜大昕张祥雨等开源推理模型 RL 训练方法

爱AI工具库 2025-02-22
11

DeepSeek 啥都开源了,就是没有开源训练代码和数据。现在,开源 RL 训练方法只需要用 1/30 的训练步骤就能赶上相同尺寸的 DeepSeek-R1-Zero 蒸馏 Qwen。国内大模型六小强之一的阶跃星辰联与清华联合发布 Open Reasoner Zero(ORZ),由 AI 大拿沈向洋、阶跃星辰创始人 / CEO 姜大昕、ResNet 作者张祥雨等一众大佬亲自署名。在响应长度上,用约 17% 的训练步骤就能赶上 DeepSeek-R1-Zero 671B。值得关注的是,团队还发现了一个重要的转折点 ——在训练步骤约 680 步时,模型的训练奖励值、反思能力和回答长度同时出现显著提升,疑似出现了 DeepSeek-R1-Zero 论文中类似的“顿悟时刻”(aha moment)。目前,研究训练数据、训练代码、论文、模型全都 100%开源,开源许可证用的也是宽松的 MIT Lisence。开源 48 小时,就已速揽 700 + 星星。以下是更多细节。复杂的奖励函数不必要?!通过广泛的实验,团队证明了一种极简主义的方法,带有 GAE 的原版 PPO 就可以有效地扩展 RL 训练(关键的参数设置是 GAE λ= 1,折扣因子 γ=1)。再加上基于规则的奖励函数,足以在推理任务上同时扩大响应长度和基准性能,类似于 DeepSeek-R1-Zero 中观察到的现象。这一结果表明复杂的奖励函数是不必要的。另外,团队在不依赖任何基于 KL 的正则化技术的情况下实现了稳定的训练,这与 RLHF 和推理模型领域目前的认知不同,这也为进一步扩大强化学习规模提供了希望。同时扩大数据数量和多样性对于 Open Reasoner Zero 的训练至关重要。虽然在像 MATH 这样有限的学术数据集上训练会导致性能快速达到平台期,但精心策划的大规模多样化数据集能够实现持续扩展,在训练集和测试集上都没有饱和的迹象。在以 Qwen2.5-Base-7B 为基础模型的实验中,所有基准测试在某个时间点都会经历奖励和响应长度的突然增加,这种现象类似于涌现行为。在整个训练过程中,Average Correct Reflection Length 始终高于 Average Response Length。一个特别值得注意的现象出现在第 680 步附近,可以观察到三个指标同时加速。最终,Open-Reasoner-Zero 模型在 MMLU 和 MMLU_PRO 基准测试中,无需任何额外的指令调整即可超越 Qwen2.5 Instruct。One More Thing昨天,在阶跃星辰生态开放日上,阶跃星辰创始人兼 CEO 姜大昕就有简单提及这项研究。只提了一嘴,是因为研究还未完全完成(Working in Progress),随时可能有新进展,感兴趣的盆友可以关注一哈。项目地址:https://github.com/Open-Reasoner-Zero/Open-Reasoner-Zero/本文来自微信公众号:量子位(ID:QbitAI),作者:梦晨西风

来源:IT之家

相关推荐

暂无数据

评论 ( 0 )

aiaitool@163.com

打开微信扫一扫

qrcode

回顶部

×

我的收藏

请先登录登录

请先登录登录